16y^2+12y^2=396

Simple and best practice solution for 16y^2+12y^2=396 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16y^2+12y^2=396 equation:



16y^2+12y^2=396
We move all terms to the left:
16y^2+12y^2-(396)=0
We add all the numbers together, and all the variables
28y^2-396=0
a = 28; b = 0; c = -396;
Δ = b2-4ac
Δ = 02-4·28·(-396)
Δ = 44352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44352}=\sqrt{576*77}=\sqrt{576}*\sqrt{77}=24\sqrt{77}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{77}}{2*28}=\frac{0-24\sqrt{77}}{56} =-\frac{24\sqrt{77}}{56} =-\frac{3\sqrt{77}}{7} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{77}}{2*28}=\frac{0+24\sqrt{77}}{56} =\frac{24\sqrt{77}}{56} =\frac{3\sqrt{77}}{7} $

See similar equations:

| -7=a+2 | | 7^3x+1=1/343 | | 4y=(y+69) | | 4x−2(x−3)=2(x+6) | | 90=6(-1-2k) | | -36=-12y-84 | | 2​ m=417​ | | a²+36²=45² | | 18=5x+29 | | X^3+x^2-16=0 | | 0.124=0.04×n | | x2+x=16.66 | | 2x+9.50=35.00 | | x2+x+-16.66=0 | | 7x+13x–5–15= | | 4v-8=8+4v | | 2x+$9.50=$35.00 | | (170+x)/(500+x)=0.35 | | 8x+3x40=180 | | -8(z+6)=-7z-5 | | 8(z+6)=-7z-5 | | -9.5x+7=-5.5x-9 | | 0.4=0.5x=x=3.7 | | =35w​ =3 | | t^2+13t+17=0 | | x=7(x+20) | | |3x-2|=23 | | 0.2x-1.3=-1.7x-5.1 | | 2x-(12-x)=-3 | | 8h=1439 | | 0.5x+2=6x-9 | | 3n+3.6=28 |

Equations solver categories